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Time integration methods can be separated into two groups: explicit and
implicit. Roughly speaking, methods which do not involve the solution of any
algebraic equations are called explicit, whereas those that require the solution
of equations are called implicit.

The relative advantages and disadvantages of explicit and implicit methods
are summarized in Fig. 1. It is interesting to observe that the positive attrib-
utes of these two methods form complementary sets, so that if the positive
attributes of the two methods can be combined into a single method, a truly
powerful method would be achieved.

An important point which is brought out in Fig. 1 is that whereas implicit
methods are unconditionally stable for linear problems, stability does not imply
accuracy and in fact the stability of implicit methods has often misled
structural analysts 1into using time steps which yield very poor accuracy.
Furthermore, no current time integration will undoubtedly be an important topic
for future research.

Relative merits of explicit and implicit integration methods
Explicit

+- very simple and trouble free algorithm, complex phenomena easily included

+ accuracy is assured if At stable for large systems

+ no stiffness matrix necessény - saves storage
- conditionally stable, small at
Implicit

+ unconditionally stable, large At

complex algorithm with low reliability in nonlinear situations

accuracy can deteriorate

Newton form has large core storage requirements

Figure 1
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The major trend of the past decade of research on time integration proce-
dures has been hybridization methods so as to take advantage of the complementary
nature of the positive attributes of explicit and implicit 1integration. The
types of hybridization are indicated in Fig. 2. References for these methods are
as follows: partitioning [1-7], operating splitting methods [8-11], semi-
implicit methods [9-12]. It should be noted that the distinction between semi-
implicit methods and operator splitting methods 1is rather fuzzy; both groups of
methods try to achieve unconditional stability through some modification of the
evolution operator which either completely obviates the need for solving any
equations or reduces the size of the system to be solved.

Objective of current research in time integration:

to exploit the advantages of implicit and explicit methods through
hybridization (advantages of the two methods are complementary!)
directions:

partitioning: different operators on different parts of the mesh

semi-implicit methods: unconditionally stable methods that require no

solution of equations or smaller systems

operator splitting methods: split A to simplify solution - similar to

semi-implicit

Figure 2
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The major shortcoming of operator splitting methods has been the rapid
deterioration of their accuracy with increasing time step. For example, if we
consider the Trujillo semi-implicit method, which is {llustrated in Fig. 3, we
find that as the Courant number increases the accuracy diminishes dramatically.
In Reference [10] it is shown that the phase velocity in a one~dimensional mesh
in the Trujillo method is such that the shorter waves essentially only advance
one mesh length during a time step; thus, the effect of the semi-implicit iate-
grator, as shown in Fig. 4, is to retard wave velocity so severely that regard-
less of the size of the time step a quasi-Courant condition applies in that the
numerical waves only traverse a single element in a time step. This distortional
characteristic of semi-implicit methods has also been noted in the rigid-body
modes by Park and Housner [12]. In Reference [12] several techniques for
improving the accuracy of semi-implicit methods were developed, but we have not
had time to check their effects independently.

TRUJILLO SEMI-IMPLICIT

(ref. 9)
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Avoidance of equation solution and unconditional stability can be achieved
by rational Runge-Kutta methods [13], see Fig. 5. Again, the accuracy of these
methods deteriorates rather quickly when the time step 1is much larger than the
stability limit for the explicit methods. These methods seem to be most suited
to parabolic systems. For structural mechanics, which involves a combination of
hyperbolic and parabolic behavior, their lack of accuracy 1is generally unaccept-
able.

Rational Runge Kutta
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unconditionally stable and second order accurate

ifc=g b =2 b,=-l Hairer 1980 (ref. 13)
no solution of equations if M diagonal
X <0 if At is too large

partitioned Rational Runge Kutta methods, Liu et al.

[JNME, 1581-1597, (1984), 1984 (ref. 14)

Figure 5
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A very novel operating splitting method, which exploits the unique features
of the finite-element assembly operation, has recently been developed by Hughes
and coworkers [15]. This method only required conversion of the element matri-
ces, so while the method does not completely avoid the solution of equations as
in semi-implicit methods, the size of equations to be solved is reduced substan-—
tially, see Fig. 6. Hughes and coworkers make a very compelling argument that
this type of method will prove particularly beneficial in three-dimensional
applications.

We have tested an early version of the method in both parabolic systems and
elastic-plastic structural mechanics problems. In comparing the method with a
conjugate gradient method, we found that the element-by-element and conjugate
gradient methods were of comparable speed. When used with large time steps in
structural dynamics problems, we were not able to achieve reasonable accuracy
unless we made a large number of sweeps during each time step. On the other
hand, we found the method to be very useful in crash-type problems in conjunction
with explicit techniques. As a deforming structure becomes mostly plastic, it
becomes possible to increase the explicit time step quite a bit if the element-
by—-element procedure is used to stabilize elements which unload into the elastic
regime. This would detract somewhat from the accuracy if it occurs in many ele-
ment. However, in general, phase accuracy is not an overriding concern in crash-
type problems, so that the potential of these methods for stabilizing explicit
methods is worth investigating. We have not yet tried the later versions of the
element-by—-element technique which are reported to be substantially more accu-
rate. Reference [16] reports a procedure which reduces the computational effort
required in solving the element equations by as much as an order of magnitude.

ELEMENT-BY-ELEMENT OPERATOR SPLIT

Hughes, Levit, Winget ASCE J. Eng. Mech. Div. April 1983 (ref. 8)
Comp. Meth. Appl. Mech. Eng. 1983 (ref. 15)
Ortiz, Pinsky and Taylor (ref. 17)

Recall implicit Eqns.
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For problems with different time scales such as the space-structure
deployment problem, where high-frequency impacts occur in conjunction with low-
frequency rigid-body motions, the partitioned methods are quite promising.
Partitioned methods are defined as those which employ different time steps or
different integrators in different parts of the mesh. During an input, it would
be desirable to use different time steps in the vicinity of the impact in solving
a large-scale structure problem. By doing this, accuracy could be retained in
all parts of the mesh without engendering large expense. The potential of these
methods 1s indicated in Fig. 7.
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Considerable progress has recently been achieved in mesh partitions with
different time steps, see References 5 to 12; 14 to 16, and 18 to 20. Basically,
two types of mixed time partitions have been involved: element partitions and
nodal partitions. The algorithm for nodal partition is shown in Fig. 8. Nodal
partitions appear to provide the best accuracy, but their analysis has been
impeded by the fact that the amplification matrix is not symmetric.

Subcycling with Nodal Partition

nodes 1 and 2 with At

nodes 3 and 4 with 2at

computations in cycle

update Ups Uy

update ?i> ﬁ:}

update ups U,
update ?i, i=1to 3

update Ups Ups Ugs Uy

update f@, f@

e amplification matrix is not symmetric

Figure 8
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An elemental partition is shown in Fig. 9. Element partitions are
associated with symmetric amplification matrices and in Ref. [20] a proof of
sufficient conditions or stability has been given for a first-order, 1linear
system with different time steps. The proof applies to both explicit and
implicit integrators.

Subcycling with Elemental Partition

o™=y e atly(s" - K ") 1st order system i.e. heat conduction

M diffusion

e}
v O

0
=0

elements 1 - with At

elements 2 & 3 - with 2t

computations in cycle

update Ups Yy

update 2}

update Uy, Uy L sometimes deleted
(s}

update ?3 i=1to3

update Ups Ups Uz, Uy

update q:>

amplification matrix eqns are symmetric

Figure 9
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Partitioned implicit methods are particularly well-suited to {iterative
solvers. Whereas for Newton-type solvers, several different triangulations have
to be stored for mixed time integration, this 1is not necessary for iterative
solvers. To illustrate the nature of the solutions which can be obtained from
these methods the results of the thermal transient problem in Fig. 10 are shown
in Figs. 11 and 12. An interesting observation from Fig. 12 is that when the
time step ratio is extremely large (32:1 in case 2), stability is maintained but
large errors develop. It has become clear that methods of this type must use a
smooth transition of time steps from the smallest time step to the largest time
step. Thus, an important ingredient in any mixed time integration procedure is a
strategy which automatically selects the time steps within the different regimes
according to accuracy requirements and provides smooth transitions of time steps
between regions where very large time steps can be used and those where very
small time steps can be used.
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The potential of these methods even in two—dimensional problems 1s quite
tremendous, as evidenced by the comparisons shown in Fig. 13. This is a two-
dimensional heat conduction problem with a large range of thermal conductivities.
As can be seen from the comparison, savings of a factor of 2 to 5 can be achieved
even in moderately sized two-dimensional problems. These types of savings have
important implications in a computer—-aided engineering environment, where the
analysis of a new concept must be achieved in a reasonable amount of time if the
design process 1is to be interactive.

These mixed-time integration procedures are in many ways still in their
infancy. The applications to nonlinear problems and contact—-impact problems will
probably require special strategies in order to exploit these methods to their
fullest advantage. It would also be desirable to develop stability analyses in
the linear regime for second-order systems, such as the equations of motion, and
for nodal partitions.

This class of methods, when combined with iterative solvers, would be
uniquely suited for parallel architecture computers. In principle, each sub-
domain with a particular time step could be treated by a different CPU. Data
transfer between subdomains would only be necessary for interface data.

Storage and Running Time Comparisons

Storage
Method 1-4E -8E-81 I 1-E-2E-21 I

At =1 At =1 At = 4 At = 4
nonzero
terms in K 3288 33771 6089 33771
average
semibandwidth 6 69 12 69
solution
time 90. 516. 70. 139.
CPU-s

Note: e problem is linear;

o 8 x 50 mesh is numbered for large bandwidth to simulate
30 problems.

Figure 13
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